Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1)
نویسنده
چکیده
We present a new aerosol microphysics and gas aerosol partitioning submodel (Global Modal-aerosol eXtension, GMXe) implemented within the ECHAM/MESSy Atmospheric Chemistry model (EMAC, version 1.8). The submodel is computationally efficient and is suitable for medium to long term simulations with global and regional models. The aerosol size distribution is treated using 7 log-normal modes and has the same microphysical core as the M7 submodel (Vignati et al., 2004). The main developments in this work are: (i) the extension of the aerosol emission routines and the M7 microphysics, so that an increased (and variable) number of aerosol species can be treated (new species include sodium and chloride, and potentially magnesium, calcium, and potassium), (ii) the coupling of the aerosol microphysics to a choice of treatments of gas/aerosol partitioning to allow the treatment of semi-volatile aerosol, and, (iii) the implementation and evaluation of the developed submodel within the EMAC model of atmospheric chemistry. Simulated concentrations of black carbon, particulate organic matter, dust, sea spray, sulfate and ammonium aerosol are shown to be in good agreement with observations (for all species at least 40% of modeled values are within a factor of 2 of the observations). The distribution of nitrate aerosol is compared to observations in both clean and polluted regions. Correspondence to: K. J. Pringle ([email protected]) Concentrations in polluted continental regions are simulated quite well, but there is a general tendency to overestimate nitrate, particularly in coastal regions (geometric mean of modelled values/geometric mean of observed data ≈2). In all regions considered more than 40% of nitrate concentrations are within a factor of two of the observations. Marine nitrate concentrations are well captured with 96% of modeled values within a factor of 2 of the observations.
منابع مشابه
Technical note: A new comprehensive SCAVenging submodel for global atmospheric chemistry modelling
We present the new scavenging scheme SCAV, simulating the removal of trace gases and aerosol particles by clouds and precipitation in global atmospheric chemistry models. The scheme is quite flexible and can be used for various purposes, e.g. long term chemistry simulations as well as detailed cloud and precipitation chemistry calculations. The presence of clouds can substantially change the ch...
متن کاملMADE-in: a new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state
Black carbon (BC) and mineral dust are among the most abundant insoluble aerosol components in the atmosphere. When released, most BC and dust particles are externally mixed with other aerosol species. Through coagulation with particles containing soluble material and condensation of gases, the externally mixed particles may obtain a liquid coating and be transferred into an internal mixture. T...
متن کاملThe MESSy aerosol submodel MADE3 (v2.0b): description and a box model test
Introduction Conclusions References
متن کاملNumerical analysis of thermal-hydraulic properties of turbulent aerosol-carbon black nanofluid flow in corrugated solar collectors with double application
In this study the effects of corrugated absorber plate and using aerosol-carbon black nanofluid on heat transfer and turbulent flow in solar collectors with double application and air heating collectors, were numerically investigated. The two-dimensional continuity, momentum and energy equation were solved by finite volume and SIMPLE algorithm. In the present investigation all the simulations w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010